Quantitative reconstruction of historical aquatic plant evolution based on multi-proxy analysis on lake sediment
Dong Xuhui1, Zhang Qinghui2, Yao Min3, Ge Yawen2, Zhang Yongdong2, Yang Xiangdong2
1. School of Geographical Sciences, Guangzhou University, Guangzhou 510006, Guangdong;
2. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu;
3. School of Environment and Planning, Liaocheng University, Liaocheng 252059, Shandong
Aquatic plants are one of the most important components in lake ecosystems. The information on their structure and evolution is essential for understanding lake ecosystems, as well as for their restoration and management. Except for those lakes with instrumental records, it is a great challenge to reconstruct the long-term pattern of aquatic plants in global environmental research. With an overall review on the current progress and approaches in reconstructing aquatic plants history, this paper focuses on a multi-proxy approach based on analysis of lake sediments, including pollen, aquatic plant remain, biomarker and diatom. Taking the Lake Liangzi(30°05'~30°18'N, 114°21'~114°39'E, Hubei Province, China) as an example, we took a 31-cm-long sediment core and examined the sedimentary proxies including 210Pb chronology, diatom and aquatic plant remains. The record on periphytic diatoms and aquatic plant remains were used for evaluating the pros and cons of those proxies in deciphering long-term evolution of aquatic plants, with validation from existing monitoring records on historical aquatic plants. We found that the major species including Potamogeton, Ceratophyllum demersum, Myriophyllum spicatum and Hydrilla verticillata can reflected by both periphytic diatoms and aquatic macrofossils. We thus concluded that aquatic plant remains analysis may be very usefully employed to determine the dominant taxa in past aquatic plant communities of shallow lakes and that the addition of diatom, pollen analysis provides further information on former species richness. For future research, we propose a research scheme including the representativity/autoecology of key species, the combination of neo-and paleo-limnology/ecology and the reconstruction validation by complement of multi-proxies from lake sediment.
Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes[J]. Aquatic Botany, 1986, 26(3-4):341-370.
[2]
Scheffer M. Ecology of Shallow Lakes[M]. London:Chapman and Hall, 1998:0-357.
[3]
Jeppesen E, Søndergaard M, Søndergaard M, et al. The structuring role of submerged macrophytes in lakes[C]//Ecological Studies (Vol. 131). New York:Springer, Verlag, 1998:423.
[4]
许秋瑾, 金相灿, 颜昌宙. 中国湖泊水生植被退化现状与对策[J]. 生态环境学报, 2006, 15(5):1126-1130. Xu Qiujin, Jin Xiangcan, Yan Changzhou. Macrophyte degradation status and countermeasures in China[J]. Ecology and Environment, 2006, 15(5):1126-1130.
[5]
Flower R J, Juggins S, Battarbee R W. Matching diatom assemblages in lake sediment cores and modern surface sediment samples:The implications for lake conservation and restoration with special reference to acidified systems[J]. Hydrobiologia, 1997, 344(1-3):27-40.
[6]
Bennion H, Battarbee R. The european union water framework directive:Opportunities for palaeolimnology[J]. Journal of Paleolimnology, 2007, 38(2):285-295.
[7]
Birks H H. Plant macrofossils[M]//Smol J P, Birks H J B, Last W M. Tracking Environmental Change Using Lake Sediments. Volume 3:Terrestrial, Algal, and Siliceous Indicators. Dordrecht, The Netherlands:Kluwer Academic Publishers, 2001:49-74.
[8]
Birks H H, Birks H J B. Reconstructing Holocene climates from pollen and plant macrofossils[M]//Mackay A, Battarbee R W, Birks H J B, et al. Global Change in the Holocene. London:Hodder Arnold, 2003:341-357.
[9]
刘卫国, 王政, 李祥忠. 内源贡献对青海湖碳同位素指标量化的影响[J]. 第四纪研究, 2016, 36(3):623-629. Liu Weiguo, Wang Zheng, Li Xiangzhong. The contribution of aquatic plants to sedimentary n-alkanes δ13C values using to qualify compositions of terrigenous plants in Lake Qinghai on the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(3):623-629.
[10]
凌光久, 贾玉连, 马春梅, 等. 内蒙古黄旗海中晚全新世(3580-1630 cal.a B.P.)气候环境记录[J]. 第四纪研究, 2016, 36(2):257-267. Ling Guangjiu, Jia Yulian, Ma Chunmei, et al. Mid-Late Holocene (3580-1630 cal.a B.P.) climate and environment records from Huangqihai Lake in Inner Mongolia[J]. Quaternary Sciences, 2016, 36(2):257-267.
[11]
高鑫, 贾铁飞, 许清海, 等. 湖北中洲子牛轭湖最近70年孢粉-炭屑记录及其对气候和人类活动的响应[J]. 第四纪研究, 2016, 36(6):1445-1455. Gao Xin, Jia Tiefei, Xu Qinghai, et al. Records of lacustrine sedimentology and pollen-charcoal assemblages responding to climate change and human activities in Zhongzhouzi Oxbow Lake, Hubei Province for about 70 years[J]. Quaternary Sciences, 2016, 36(6):1445-1455.
[12]
阳小兰, 张茹春, 张振, 等. 安固里淖湖近5000年来环境变化的孢粉及地球化学沉积记录[J]. 第四纪研究, 2017, 37(1):130-142. Yang Xiaolan, Zhang Ruchun, Zhang Zhen, et al. Environmental change since 5000 cal.a B.P. in the Anguli-Nuur Lake area based on palynological and geochemical records[J]. Quaternary Sciences, 2017, 37(1):130-142.
[13]
王欢业, 刘卫国, 张传伦, 等. 青海湖钻孔沉积物中的羟基甘油二烷基甘油四醚类化合物及其环境意义[J]. 第四纪研究, 2017, 37(5):1151-1160. Wang Huanye, Liu Weiguo, Zhang Chuanlun, et al. Hydroxylated glycerol dialkyl glycerol tetraethers in Lake Qinghai sediments and their paleoclimate implications[J]. Quaternary Sciences, 2017, 37(5):1151-1160.
[14]
Madgwick G, Emson D, Sayer C D, et al. Centennial-scale changes to the aquatic vegetation structure of a shallow eutrophic lake and implications for restoration[J]. Freshwater Biology, 2011, 56(12):2620-2636.
[15]
Salgado J, Sayer C, Carvalho L, et al. Assessing aquatic macrophyte community change through the integration of palaeolimnological and historical data at Loch Leven, Scotland[J]. Journal of Paleolimnology, 2010, 43(1):191-204.
[16]
葛继稳, 蔡庆华, 李建军, 等. 梁子湖水生植被1955-2001年间的演替[J]. 北京林业大学学报, 2004, 26(1):14-20. Ge Jiwen, Cai Qinghua, Li Jianjun, et al. On aquatic vegetation succession of Lake Liangzihu from 1955 to 2001[J]. Journal of Beijing Forestry University, 2004, 26(1):14-20.
[17]
彭映辉, 简永兴, 倪乐意. 湖北省梁子湖水生植物的多样性[J]. 中南林业科技大学学报, 2005, 25(6):60-64. Peng Yinghui, Jian Yongxing, Ni Leyi. Diversity study of aquatic plants in Lake Liangzi of Hubei Province, China[J]. Journal of Central South Forestry University, 2005, 25(6):60-64.
[18]
王卫民, 杨干荣. 梁子湖水生植被[J]. 华中农业大学学报, 1994, 13(3):281-290. Wang Weimin, Yang Ganrong. Aquatic vegetation in Liangzi Lake[J]. Journal of Huazhong Agricultural University, 1994, 13(3):281-290.
[19]
刘伟龙, 邓伟, 王根绪, 等. 洪泽湖水生植被现状及过去50多年的变化特征研究[J]. 水生态学杂志, 2009, 2(6):1-8. Liu Weilong, Deng Wei, Wang Genxu, et al. Aquatic macrophyte status and variation characteristics in the past 50 years in Hongzehu Lake[J]. Journal of Hydroecology, 2009, 2(6):1-7.
[20]
Luo J, Li X, Ma R, et al. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China[J]. Ecological Indicators, 2016, 60:503-513.
[21]
王琪, 周兴东, 罗菊花, 等. 近30年太湖沉水植物优势种遥感监测及变化分析[J]. 水资源保护, 2016, 32(5):123-129. Wang Qi, Zhou Xingdong, Luo Juhua, et al. Remote sensing monitoring and analysis of dominant species of submerged vegetation in Taihu Lake over last 30 years[J]. Water Resources Protection, 2016, 32(5):123-129.
[22]
Davidson T A, Sayer C D, Bennion H, et al. A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake[J]. Freshwater Biology, 2005, 50(10):1671-1686.
[23]
Sayer C D, Burgess A, Kari K, et al. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake:Implications for the stability of macrophyte-dominance[J]. Freshwater Biology, 2010, 55(3):565-583.
[24]
韩鹏, 刘兴起. 内蒙古中东部查干淖尔湖流域7000年以来的气候演变[J]. 第四纪研究, 2017, 37(6):1381-1390. Han Peng, Liu Xingqi. The climate evolution inferred from Chagan-Nuur in middle-east part of Inner Mongolia since the last 7000 years[J]. Quaternary Sciences, 2017, 37(6):1381-1390.
[25]
倪振宇, 王永波, 刘兴起. 青藏高原北部库赛湖自生碳酸盐稳定同位素记录的晚全新世气候组合特征[J]. 第四纪研究, 2016, 36(4):961-969. Ni Zhenyu, Wang Yongbo, Liu Xingqi. Late Holocene climatic combination on the northern Tibetan Plateau based on stable isotope analysis of authigenic carbonate from Kusai Lake[J]. Quaternary Sciences, 2016, 36(4):961-969.
[26]
张恩楼, 陈建徽, 曹艳敏, 等. 摇蚊亚化石记录及其在中国湖泊沉积与全球变化研究中的应用[J]. 第四纪研究, 2016, 36(3):646-655. Zhang Enlou, Chen Jianhui, Cao Yanmin, et al. Subfossil chironomid archives and its application in palaeolimnological and global change study in China[J]. Quaternary Sciences, 2016, 36(3):646-655.
[27]
Xu Q, Zhang S, Gaillard M J, et al. Studies of modern pollen assemblages for pollen dispersal-deposition-preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact:A review based on case studies in China[J]. Quaternary Science Reviews, 2016, 149:151-166.
[28]
Edwards M E, Bigelow N H, Finney B P, et al. Records of aquatic pollen and sediment properties as indicators of Late-Quaternary Alaskan lake levels[J]. Journal of Paleolimnology, 2000, 24(1):55-68.
[29]
Sawada M, Viau A E, Gajewski K. The biogeography of aquatic macrophytes in North America since the Last Glacial Maximum[J]. Journal of Biogeography, 2003, 30(7):999-1017.
[30]
Chen Y, Chen S, Ma C, et al. Palynological evidence of natural and anthropogenic impacts on aquatic environmental changes over the last 150 years in Dongping Lake, North China[J]. Quaternary International, 2014, 349(3):2-9.
[31]
Yang Y, Yin X, Yang Z, et al. Detection of regime shifts in a shallow lake ecosystem based on multi-proxy paleolimnological indicators[J]. Ecological Indicators, 2017, in press. http://dx.doi.org/10.1016/j.ecolind.2017.05.059.
[32]
Ge Y, Li Y, Bunting M J, et al. Relation between modern pollen rain, vegetation and climate in Northern China:Implications for quantitative vegetation reconstruction in a steppe environment[J]. Science of the Total Environment, 2017, 586:25-41.
[33]
Li W. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants[J]. Aquatic Botany, 2014, 118:62-70.
[34]
Eckert C G, Dorken M E, Barrett S C H. Ecological and evolutionary consequences of sexual and clonal reproduction in aquatic plants[J]. Aquatic Botany, 2016, 135:46-61.
[35]
Thompson F L, Eckert C G. Trade-offs between sexual and clonal reproduction in an aquatic plant:Experimental manipulations vs. phenotypic correlations[J]. Journal of Evolutionary Biology, 2004, 17(3):581.
[36]
Scheffer M, Hosper S H, Meijer M L, et al. Alternative equilibria in shallow lakes[J]. Trends in Ecology & Evolution, 1993, 8(8):275.
[37]
Levi E E, Çak?ro?lu A I, Bucak T, et al. Similarity between contemporary vegetation and plant remains in the surface sediment in Mediterranean lakes[J]. Freshwater Biology, 2014, 59(4):724-736.
[38]
Zhao Y, Sayer C D, Birks H H, et al. Spatial representation of aquatic vegetation by macrofossils and pollen in a small and shallow lake[J]. Journal of Paleolimnology, 2006, 35(2):335-350.
[39]
谢树成, 梁斌, 郭建秋, 等. 生物标志化合物与相关的全球变化[J]. 第四纪研究, 2003, 23(5):521-528. Xie Shucheng, Liang Bin, Guo Jianqiu, et al. Biomarkers and the related global change[J]. Quaternary Sciences, 2003, 23(5):521-528.
[40]
Cranwell P A. Lipid geochemistry of sediments from Upton Broad, a small productive lake[J]. Organic Geochemistry, 1984, 7(1):25-37.
[41]
Viso A C, Pesando D, Bernard P, et al. Lipid components of the Mediterranean seagrass Posidonia oceanica[J]. Phytochemistry, 1993, 34(2):381-387.
[42]
Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7):745-749.
[43]
Zhang Y, Su Y, Liu Z, et al. Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China[J]. Ecological Indicators, 2017, 77:397-408.
[44]
王明达, 李秀美, 梁洁, 等. 青藏高原湖泊长链不饱和烯酮研究现状及展望[J]. 第四纪研究, 2016, 36(4):1002-1014. Wang Mingda, Li Xiumei, Liang Jie, et al. Progress in the studies of long chain unsaturated alkenones in Tibetan Plateau lakes[J]. Quaternary Sciences, 2016, 36(4):1002-1014.
[45]
刘晶晶, 张江勇, 陈云如, 等. 基于叶蜡正构烷烃重建的南海及周边地区植被类型[J]. 第四纪研究, 2016, 36(3):553-563. Liu Jingjing, Zhang Jiangyong, Chen Yunru, et al. Vegetation changes recorded by leaf-wax n-alkanes around the South China Sea[J]. Quaternary Sciences, 2016, 36(3):553-563.
[46]
Karst T L, Smol J P. Paleolimnological evidence of limnetic nutrient concentration equilibrium in a shallow, macrophyte-dominated lake[J]. Aquatic Sciences, 2000, 62(1):20-38.
[47]
Hudon C, Legendre P. The ecological implications of growth forms in epibenthic diatoms[J]. Journal of Phycology, 1987, 23(3):434-441.
[48]
Mccormick P V, Stevenson R J. Effects of snail grazing on benthic algal community structure in different nutrient environments[J]. Journal of the North American Benthological Society, 1989, 8(2):162-172.
[49]
姚敏. 长江中下游现代硅藻研究及其在古生态重建中的应用[D]. 北京:中国科学院研究生院博士论文, 2011:38-50. Yao Min. Modern Diatom Research and the Applications of Paleoecological Reconstruction in the Middle and Lower Reaches of the Yangtze River[D]. Beijing:The Doctoral Dissertation of Graduated University of Chinese Academy of Sciences, 2011:38-50.
[50]
张清慧, 董旭辉, 姚敏, 等. 沉积硅藻揭示的历史时期水生植被信息——以梁子湖为例[J]. 水生生物学报, 2014, 38(6):1024-1032. Zhang Qinghui, Dong Xuhui, Yao Min, et al. Historical information on aquatic vegetation revealed by sedimentary diatoms:A case study on Liangzi Lake[J]. Acta Hydrobiologica Sinica, 2014, 38(6):1024-1032.
[51]
张清慧, 董旭辉, 羊向东. 湖北梁子湖近百年来环境演变历史及驱动因素分析[J]. 湖泊科学, 2016, 28(3):545-553. Zhang Qinghui, Dong Xuhui, Yang Xiangdong. Environmental evolution of Lake Liangzi and its driving factors over the past 100 years[J]. Journal of Lake Sciences, 2016, 28(3):545-553.
[52]
Birks H J B, Birks H H. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras?[J]. New Phytologist, 2016, 209(2):499-506.
[53]
刘贵华, 肖蒇, 陈漱飞, 等. 土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用[J]. 自然科学进展, 2007, 17(6):741-747. Liu Guihua, Xiao Chan, Chen Shufei, et al. The role of soil seed bank in wetland restoration and biodiversity conservation in the middle and lower reaches of the Yangtze River[J]. Progress in Natural Science, 2007, 17(6):741-747.