The organic carbon storage in Chinese lake sediments during the Holocene Megathermal
Zhang Fengju1, Xue Bin2, Yao Shuchun2
1. School of Geography, Geomatics, and Planning, Jiangsu Normal University, Xuzhou 221116, Jiangsu;
2. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu
As an important component of the terrestrial ecosystem, lakes play an important role in the global and regional carbon cycle. Understanding and reconstructing the carbon storage in lake sediments during the Holocene Megathermal(6±0.5 ka B.P.) can contribute to the assessment of the lake carbon sequestration potential in the near future. In this study, 65 lakes with total organic carbon content(TOC) and reliable chronology of the Holocene Megathermal were chosen to determine the total carbon storage in Chinese lakes at that time period. The results showed that the carbon storage in Chinese lakes was estimated to be 4.56 Pg C(varying from 0.90 Pg C to 19.08 Pg C) (1 Pg=1015 g) during the Holocene Megathermal. The carbon stock was mainly concentrated in Eastern Plain Lake Region, Inner Mongolian-Xinjiang Lake Region and Tibet Plateau Lake Region. The average organic carbon accumulation rate(OCAR) in Chinese lakes ranged between 4.4 g/(m2·a) and 92.6 g/(m2·a), with a mean of 22.3 g/(m2·a) during the Holocene Megathermal. The Inner Mongolian-Xinjiang Lake Region had the highest OCAR, while the Tibet Plateau Lake Region had the lowest value. Furthermore, the carbon storage in Chinese lakes during the Holocene Megathermal was about 3%of that buried by terrestrial ecosystem, but in only 2%of the area. In particular, lake sediments can be preserved for quite longer times than forest biomass and soil, thus it is reasonable to conclude that lakes play a significant role in maintaining the global carbon balance and their carbon sink functions should be taken into consideration in the future.
张风菊, 薛滨, 姚书春. 大暖期中国湖泊沉积物有机碳储量的初步估算研究[J]. 第四纪研究, 2018, 38(4): 887-899.
Zhang Fengju, Xue Bin, Yao Shuchun. The organic carbon storage in Chinese lake sediments during the Holocene Megathermal. Quaternary Sciences, 2018, 38(4): 887-899.
Keeling C D. Climate change and carbon dioxide:An introduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(16):8273-8274.
[2]
Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth's ecosystems[J]. Science, 1997, 277(5325):494-499.
[3]
方精云, 郭兆迪, 朴世龙, 等. 1981~2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑), 2007, 37(6):804-812. Fang Jingyun, Guo Zhaodi, Piao Shilong, et al. Estimation on terrestrial vegetation carbon sinks in China from 1981 to 2000[J]. Science in China(Series D), 2007, 37(6):804-812.
[4]
葛全胜, 王芳, 陈泮勤, 等. 全球变化研究进展和趋势[J]. 地球科学进展, 2007, 22(4):417-427. Ge Quansheng, Wang Fang, Chen Panqin, et al. Review on global change research[J]. Advance in Earth Science, 2007, 22(4):417-427.
[5]
袁道先. 地球系统的碳循环和资源环境效应[J]. 第四纪研究, 2001, 21(3):223-232. Yuan Daoxian. Carbon cycle in earth system and its effects on environment and resources[J]. Quaternary Sciences, 2001, 21(3):223-232.
[6]
Algesten G, Sobek S, Bergstrøm A K, et al. Role of lakes for organic carbon cycling in the boreal zone[J]. Global Change Biology, 2004, 10(1):141-147.
[7]
Alin S R, Johnson T C. Carbon cycling in large lakes of the world:A synthesis of production, burial, and lake-atmosphere exchange estimates[J]. Global Biogeochemical Cycles, 2007, 21(3):1-12.
[8]
Anderson N J, D'andrea W, Fritz S C. Holocene carbon burial by lakes in SW Greenland[J]. Global Change Biology, 2009, 15(11):2590-2598.
[9]
Campbell I D, Campbell C, Vitt D H, et al. A first estimate of organic carbon storage in Holocene lake sediments in Alberta, Canada[J]. Journal of Paleolimnology, 2000, 24(4):395-400.
[10]
Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1):172-185.
[11]
Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26(6):535-538.
[12]
Downing J A, Cole J J, Middelburg J J, et al. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century[J]. Global Biogeochemical Cycles, 2008, 22(1):1-10.
[13]
Einsele G, Yan J, Hinderer M. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget[J]. Global and Planetary Change, 2001, 30(3):167-195.
[14]
Ferland M E, Giorgio P A, Teodoru C R, et al. Long-term C accumulation and total C stocks in boreal lakes in northern Québec[J]. Global Biogeochemical Cycles, 2012, 26(4):1-10.
[15]
Heathcote A J, Downing J A. Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape[J]. Ecosystems, 2012, 15(1):60-70.
[16]
Kastowski M, Hinderer M, Vecsei A. Long-term carbon burial in European lakes:Analysis and estimate[J]. Global Biogeochemical Cycles, 2011, 25(3):1-12.
[17]
Kortelainen P, Pajunen H, Rantakari M, et al. A large carbon pool and small sink in boreal Holocene lake sediments[J]. Global Change Biology, 2004, 10(10):1648-1653.
[18]
Molot L A, Dillon P J. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere[J]. Global Biogeochemical Cycles, 1996, 10(3):483-492.
[19]
Mulholland P J, Elwood J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle[J]. Tellus, 1982, 34(5):490-499.
[20]
Parplies J, Lücke A, Vos H, et al. Late glacial environment and climate development in Northeastern China derived from geochemical and isotopic investigations of the varved sediment record from Lake Sihailongwan (Jilin Province)[J]. Journal of Paleolimnology, 2008, 40(1):471-487.
[21]
Tranvik L J, Downing J A, Cotner J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6, part 2):2298-2314.
[22]
Yang H, Xing Y, Xie P, et al. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance[J]. Environmental Pollution, 2008, 151(3):559-568.
[23]
Falkowski P, Scholes R J, Boyle E E A, et al. The global carbon cycle:A test of our knowledge of earth as a system[J]. Science, 2000, 290(5490):291-296.
[24]
Williamson C E, Saros J E, Vincent W F, et al. Lakes and reservoirs as sentinels, integrators, and regulators of climate change[J]. Limnology and Oceanography, 2009, 54(6, part 2):2273-2282.
[25]
于浩, 李宁. 湖泊碳循环及碳通量的估算方法[J]. 环境科技, 2008, 21(A02):1-5. Yu Hao, Li Ning. Carbon cycle of lake and estimate method of air-water carbon dioxide exchange quantities[J]. Environmental Science and Technology, 2008, 21(A02):1-5.
[26]
Dong X H, Anderson N J, Yang X D, et al. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration[J]. Global Change Biology, 2012, 18(7):2205-2217.
[27]
Gui Z F, Xue B, Yao S C, et al. Organic carbon burial in lake sediments in the middle and lower reaches of the Yangtze River basin, China[J]. Hydrobiologia, 2013, 710(1):143-156.
[28]
Lan J H, Xu H, Liu B, et al. A large carbon pool in lake sediments over the arid/semiarid region, NW China[J]. Chinese Journal of Geochemistry, 2015, 34(3):289-298.
[29]
Wang M, Chen H, Yu Z, et al. Carbon accumulation and sequestration of lakes in China during the Holocene[J]. Global Change Biology, 2015, 21(12):4436-4448.
[30]
Xie Z, He J, Lü C, et al. Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China[J]. Environmental Earth Sciences, 2015, 73(5):2169-2178.
[31]
Xu H, Lan J, Liu B, et al. Modern carbon burial in Lake Qinghai, China[J]. Applied Geochemistry, 2013, 39:150-155.
[32]
Yu Z T, Wang X J, Zhao C Y, et al. Carbon burial in Bosten Lake over the past century:Impacts of climate change and human activity[J]. Chemical Geology, 2015, 419:132-141.
[33]
段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2):463-469.Duan Xiaonan, Wang Xiaoke, Lu Fei, et al. Carbon sequestration and its potential by wetland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2):463-469.
[34]
张风菊, 薛滨, 姚书春, 等. 全新世大暖期中国湖泊碳埋藏速率初步研究[J]. 第四纪研究, 2013, 33(2):401-402. Zhang Fengju, Xue Bin, Yao Shuchun, et al. The Holocene Megathermal organic carbon burial rates in Chinese lake sediments[J]. Quaternary Sciences, 2013, 33(2):401-402.
[35]
侯光良, 许长军, 曹广超, 等. 青藏高原末次冰消期-全新世中期人类扩张的时空模拟[J]. 第四纪研究, 2017, 37(4):709-720. Hou Guangliang, Xu Changjun, Cao Guangchao, et al. The spatial-temporal simulation of mankind's expansion on the Tibetan Plateau during last deglaciation-Middle Holocene[J]. Quaternary Sciences, 2017, 37(4):709-720.
[36]
张振, 李佳, 王春癑, 等. 冀中南地区新石器时代至春秋时期聚落遗址时空分布及环境演变的影响[J]. 第四纪研究, 2017, 37(3):474-485. Zhang Zhen, Li Jia, Wang Chunyue, et al. The temporal and spatial distribution of settlement sites and the influence of environmental changes since the Neolithic to Chunqiu periods in central and southern Hebei Province[J]. Quaternary Sciences, 2017, 37(3):474-485.
[37]
周云鹏, 胡忠行, 张曼, 等. 浙江望东篛亚高山沼泽泥炭磁性特征及其环境意义[J]. 第四纪研究, 2017, 37(6):1348-1356. Zhou Yunpeng, Hu Zhongxing, Zhang Man, et al. Magnetic properties of the Wangdongyang subalpine peatland in Zhejiang Province, Eastern China and its paleoenvironmental implications[J]. Quaternary Sciences, 2017, 37(6):1348-1356.
[38]
章云霞, 叶玮, 马春梅, 等. 浙江北湖桥孔色度记录的早-中全新世环境变化[J]. 第四纪研究, 2016, 36(5):1331-1342. Zhang Yunxia, Ye Wei, Ma Chunmei, et al. Environment variabilities archived by color of the drill core Beihuqiao in Hangjiahu Plain during the Early-Mid Holocene, China[J]. Quaternary Sciences, 2016, 36(5):1331-1342.
[39]
Intergovernmental Panel on Climate Change. Climate Change 2013:The Physical Science Basis[M]. London:Cambridge University Press, 2013:1-29.
[40]
施雅风, 孔昭宸. 中国全新世大暖期气候与环境[M]. 北京:海洋出版社, 1992:1-18. Shi Yafeng, Kong Zhaochen. Holocene Megathermal Climate and Environment in China[M]. Beijing:China Ocean Press, 1992:1-18.
[41]
薛滨, 于革, 张风菊. 中国晚第四纪古湖泊数据库(第二版)[M]. 北京:科学出版社, 2016:1-465. Xue Bin, Yu Ge, Zhang Fengju. Lake Status Records from China since the Late Quaternary:Data Base Documentation (Second Edition)[M]. Beijing:Science Press, 2016:1-465.
[42]
Dean W E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition:Comparison with other methods[J]. Journal of Sedimentary Research, 1974, 44(1):242-248.
[43]
Dean W E. The carbon cycle and biogeochemical dynamics in lake sediments[J]. Journal of Paleolimnology, 1999, 21(4):375-393.
[44]
马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量, 面积与空间分布[J]. 中国科学:地球科学, 2011, 41(3):394-401. Ma Ronghua, Yang Guishan, Duan Hongtao, et al. China's lakes at present:Number, area and spatial distribution[J]. Science China:Earth Sciences, 2011, 41(3):394-401.
[45]
Müller B, Maerki M, Schmid M, et al. Internal carbon and nutrient cycling in Lake Baikal:Sedimentation, upwelling, and early diagenesis[J]. Global and Planetary Change, 2005, 46(1):101-124.
[46]
刘玉英. 晚更新世晚期以来二龙湾玛珥湖植被与环境演化研究[D]. 长春:吉林大学博士论文, 2009:1-122. Liu Yuying. Vegetation and Environmental History of Erlongwan Maer Lake since the Late Stage of Late Pleistocene[D]. Changchun:The Doctoral Dissertation of Jilin University, 2009:1-122.
[47]
刘强, 刘嘉麒, 陈晓雨, 等. 18.5 ka B.P. 以来东北四海龙湾玛珥湖全岩有机碳同位素记录及其古气候环境意义[J]. 第四纪研究, 2005, 25(6):711-721. Liu Qiang, Liu Jiaqi, Chen Xiaoyu, et al. Stable carbon isotope record of bulk organic matter from the Sihailongwan Maar Lake, Northeast China during the past 18.5 ka[J]. Quaternary Sciences, 2005, 25(6):711-721.
[48]
Liu H, Ren H, Hui D, et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. Journal of Environmental Management, 2014, 133:86-93.
[49]
Benson L V. Paleoclimatic significance of lake-level fluctuations in the Lahontan Basin[J]. Quaternary Research, 1981, 16(3):390-403.
[50]
Hastenrath S, Kutzbach J E. Paleoclimatic estimates from water and energy budgets of East African lakes[J]. Quaternary Research, 1983, 19(2):141-153.
[51]
方修琦, 刘翠华, 侯光良. 中国全新世暖期降水格局的集成重建[J]. 地理科学, 2011, 31(11):1287-1295. Fang Xiuqi, Liu Cuihua, Hou Guangliang. Reconstruction of precipitation pattern of China in the Holocene Megathermal[J]. Scientia Geographica Sinica, 2011, 31(11):1287-1295.
[52]
侯光良, 鄂崇毅, 肖景义. 青藏高原全新世降水序列的集成重建[J]. 地理科学进展, 2012, 31(9):1117-1123. Hou Guangliang, E Chongyi, Xiao Jingyi. Synthetical reconstruction of the precipitation series of the Qinghai-Tibet Plateau during the Holocene[J]. Progress in Geography, 2012, 31(9):1117-1123.
[53]
张风菊, 薛滨, 姚书春, 等. 大暖期青藏及蒙新湖区古湖泊面积重建[J]. 第四纪研究, 2015, 35(6):1525-1536. Zhang Fengju, Xue Bin, Yao Shuchun, et al. Reconstruction of lake areas during the Holocene Megathermal in the Tibet Plateau and Inner Mongolia-Xinjiang Region[J]. Quaternary Sciences, 2015, 35(6):1525-1536.
[54]
黄智华, 薛滨, 逢勇. 近50 a中国东部和西部湖区水量空间变化趋势[J]. 湖泊科学, 2007, 19(5):497-503. Huang Zhihua, Xue Bin, Pang Yong. Spatial variation of lake water quantity in the east and west regions of China during the past 50 years[J]. Journal of Lake Sciences, 2007, 19(5):497-503.
[55]
安新县地方志编纂委员会. 安新县志[M]. 北京:新华出版社, 2000:10-17. Anxin County Annals Compilation Committee. Anxin County Annals[M]. Beijing:Xinhua Publishing House, 2000:10-17.
[56]
王洁, 徐宗学. 白洋淀流域气温与降水量长期变化趋势及其持续性分析[J]. 资源科学, 2009, 31(9):1498-1505. Wang Jie, Xu Zongxue. Long-term trend and the sustainability of air temperature and precipitation in the Baiyangdian basin[J]. Resource Science, 2009, 31(9):1498-1505.
[57]
沈吉, 张祖陆, 杨丽原, 等. 南四湖——环境与资源研究[M]. 北京:地震出版社, 2008:1-284. Shen Ji, Zhang Zulu, Yang Liyuan, et al. Nansihu Lake-Environment and Resource Studies[M]. Beijing:Seismological Press, 2008:1-284.
[58]
高伟, 王西琴, 曾勇. 太湖流域西苕溪1972-2008年径流量变化趋势与原因分析[J]. 中国农村水利水电, 2010,(6):33-37. Gao Wei, Wang Xiqin, Zeng Yong. A trend analysis of observations of runoff in the Xitiaoxi River in the Taihu Lake between 1972 and 2008[J]. China Rural Water and Hydropower, 2010,(6):33-37.
[59]
闻余华, 黄利亚, 罗俐雅. 洪泽湖水位变化特征分析[J]. 江苏水利, 2006,(3):27-28. Wen Yuhua, Huang Liya, Luo Liya. Analysis of the characteristics of water level of Hongze Lake[J]. Jiangsu Water Resources, 2006,(3):27-28.
[60]
陈世俭, 王学雷, 卢山. 洪湖的水资源与水位调控[J]. 华中师范大学学报:自然科学版, 2002, 36(1):121-124. Chen Shijian, Wang Xuelei, Lu Shan. Water resource and water level control of Honghu Lake[J]. Journal of Central China Normal University(Natural Science), 2002, 36(1):121-124.
[61]
邓英春, 曾昭慈, 陈昌新. 巢湖水环境问题的探讨[J]. 安徽地质, 1997, 7(4):32-34. Deng Yingchun, Zeng Zhaoci, Chen Changxin. The study on water environment of Chaohu Lake[J]. Geology of Anhui, 1997, 7(4):32-34.
[62]
董志红. 巢湖生态需水量计算[J]. 江淮水利科技, 2008,(2):38-39. Dong Zhihong. The ecological water demand of Chaohu Lake[J]. Jianghuai Water Conservancy Technology, 2008,(2):38-39.
[63]
宋卫恒. 巢湖生态旅游气候资源研究[D]. 合肥:安徽农业大学硕士论文, 2008:1-63. Song Weiheng. Studies on Climate Resources of Ecotourism in Chaohu Beauty Spot[D]. Hefei:The Mater's Dissertation of Anhui Agricultural University, 2008:1-63.
[64]
陈文江, 谭炳卿, 吕友保. 巢湖生态调水对鱼类资源的影响分析[J]. 合肥工业大学学报:自然科学版, 2012, 35(12):1681-1685. Chen Wenjiang, Tan Bingqing, Lü Youbao. Analysis of the effect of ecological water transfer on fish resources of Chaohu Lake[J]. Journal of Hefei University of Technology:Natural Science, 2012, 35(12):1681-1685.
[65]
张海林, 张卫国, 俞立中, 等. 安徽巢湖杭埠河流域近50 a来降水和径流特征探讨[J]. 华中师范大学学报:自然科学版, 2006, 40(4):617-620. Zhang Hailin, Zhang Weiguo, Yu Lizhong, et al. Trend analysis of the precipitation and runoff of the Hangbu river watershed over the past 50 years[J]. Journal of Central China Normal University (Natural Science), 2006, 40(4):617-620.
[66]
郭红丽, 龚来存, 沈乐. 南京固城湖干涸水文情势研究及成因分析[J]. 人民长江, 2012, 43(24):18-20. Guo Hongli, Gong Laicun, Shen Le. Analysis on hydrological regime and fry-up causes of Gucheng Lake in Nanjing City[J]. Yangtze River, 2012, 43(24):18-20.
[67]
谷孝鸿, 范成新, 杨龙元, 等. 固城湖冬季生物资源现状及环境质量与资源利用评价[J]. 湖泊科学, 2002, 14(3):283-288. Gu Xiaohong, Fan Chengxin, Yang Longyuan, et al. Investigations of biological resource in winter Gucheng Lake assessment of environmental quality and resource utilization[J]. Journal of Lake Sciences, 2002, 14(3):283-288.
[68]
李景刚, 黄诗峰, 李纪人, 等. 1960-2008年间洞庭湖流域降水变化时空特征分析[J]. 中国水利水电科学研究院学报, 2010, 8(4):275-280. Li Jinggang, Huang Shifeng, Li Jiren, et al. Spatial-temporal characteristics of precipitation in the Lake Dongting basin from 1960 to 2008[J]. Journal of China Institute of Water Resources and Hydropower Research, 2010, 8(4):275-280.
[69]
张国庆, 姚檀栋, 康世昌, 等. 基于ICESat和Land sat的中国十大湖泊水量平衡估算[J]. 科学通报, 2013, 58(26):2664-2678. Zhang Guoqing, Yao Tandong, Kang Shichang, et al. Water balance estimates of ten greatest lakes in China using ICESat and Land sat data[J]. Chinese Science Bulletin, 2013, 58(26):2664-2678.
[70]
谭衢霖, 刘正军, 胡吉平, 等. 应用多源遥感影像提取鄱阳湖形态参数[J]. 北京交通大学学报:自然科学版, 2006, 30(4):26-30. Tan Qulin, Liu Zhengjun, Hu Jiping, et al. Measuring lake water level using multi-source remote sensing images combined with hydrological statistical data[J]. Journal of Beijing Jiaotong University:Natural Science, 2006, 30(4):26-30.
[71]
任洪蔚. 水位变化对鄱阳湖区血吸虫病传播的影响及综合防治策略研究[D]. 南昌:江西师范大学硕士论文, 2012:1-54. Ren Hongwei. The Research about the Influence of Water Level Change on the Spread of Schistosomiasis and the Comprehensive Control Strategy in Poyang Lake Region[D]. Nnachang:The Mater's Dissertation of Jiangxi Normal University, 2012:1-54.
[72]
叶许春. 近50年鄱阳湖水量变化机制与未来变化趋势预估[D]. 南京:中国科学院南京地理与湖泊研究所博士论文, 2010:1-142. Ye Xuchun. Mechanism of Poyang Lake Water Storage Variation in the Last Five Decades and the Assessment of Potential Change under Future Climate[D]. Nanjing:The Doctoral Dissertation of Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2010:1-142.
[73]
孙冬, 李莉. 兴凯湖出湖地面径流量计算[J]. 黑龙江水利科技, 1996,(1):38-41. Sun Dong, Li Li. The surface runoff of Xingkai Lake[J]. Heilongjiang Water Conservancy Technology, 1996,(1):38-41.
[74]
朴德雄, 王凤昆. 兴凯湖水环境状况及其保护对策[J]. 湖泊科学, 2011, 23(2):196-202. Piao Dexiong, Wang Fengkun. Environmental conditions and the protection countermeasures for waters of Lake Xingkai[J]. Journal of Lake Sciences, 2011, 23(2):196-202.
[75]
刘正茂, 吕宪国, 武海涛, 等. 兴凯湖最低生态安全水位研究[J]. 水利水电技术, 2008, 39(2):8-10. Liu Zhengmao, Lü Xianguo, Wu Haitao, et al. Study on lowest water level of Xingkai Lake for ecological safety[J]. Water Resources and Hydropower Engineering, 2008, 39(2):8-10.
[76]
吕金福, 范有生. 莫莫格湖泊群近50年来的环境变化[J]. 地理科学, 2000, 20(3):279-283. Lü Jinfu, Fan Yousheng. The environment change of Melmeg Lake Groups of 50 years[J]. Scientia Geographica Sinica, 2000, 20(3):279-283.
[77]
范杰, 范军. 莫莫格湖泊群环境变化的探讨[J]. 吉林水利, 2004,(3):1-3. Fan Jie, Fan Jun. Approach of environmental changing for Momoge Lakes[J]. Jilin Water Resources, 2004,(3):1-3.
[78]
王富葆, 马春梅, 夏训诚, 等. 罗布泊地区自然环境演变及其对全球变化的响应[J]. 第四纪研究, 2008, 28(1):150-153. Wang Fubao, Ma Chunmei, Xia Xuncheng, et al. Environmental evolution in Lop Nur since Late Pleistocene and its response to the global changes[J]. Quaternary Sciences, 2008, 28(1):150-153.
[79]
汪文先. 罗布泊及邻近地区第四纪与湖泊发育史研究简况[J]. 第四纪研究, 1986,(2):75-86. Wang Wenxian. A study on the development history of the study of the Quaternary deposites of the Lop-Nur Lake and its adjacent area[J]. Quaternary Sciences, 1986,(2):75-86.
[80]
张成君, 陈发虎, 尚华明, 等. 中国西北干旱区湖泊沉积物中有机质碳同位素组成的环境意义[J]. 第四纪研究, 2004, 24(1):88-94. Zhang Chengjun, Chen Fahu, Shang Huaming, et al. The paleoenvironmental significance of organic carbon isotope in lacustrine sediments in the arid China:An example from Sanjiaocheng Palaeolake in Minqin[J]. Quaternary Sciences, 2004, 24(1):88-94.
[81]
于革, 薛滨, 刘健, 等. 中国湖泊演变与古气候动力学研究[M]. 北京:气象出版社, 2001:135-145. Yu Ge, Xue Bin, Liu Jian, et al. Lake Records from China and the Palaeoclimate Dynamics[M]. Beijing:China Meteorological Press, 2001:135-145.
[82]
景可, 张信宝. 长江中上游土壤自然侵蚀量及其估算方法[J]. 地理研究, 2007, 26(1):67-74. Jing Ke, Zhang Xinbao. A discussion on natural sediment yield in the upper and middle Yangtze River[J]. Geographical Research, 2007, 26(1):67-74.
[83]
Zhang F J, Yao S C, Xue B, et al. Organic carbon burial in Chinese lakes over the past 150 years[J]. Quaternary International, 2017, 438:94-103.
[84]
Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525):2320-2322.
[85]
Wu H, Guo Z, Peng C. Distribution and storage of soil organic carbon in China[J]. Global Biogeochemical Cycles, 2003, 17(2):1-17.
[86]
Wu H B, Guo Z T, Gao Q, et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture, Ecosystems & Environment, 2009, 129(4):413-421.
[87]
潘根兴, 李恋卿, 张旭辉, 等. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, 2003, 18(4):609-618. Pan Genxing, Li Lianqing, Zhang Xuhui, et al. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands[J]. Advances in Earth Science, 2003, 18(4):609-618.
[88]
Pan G, Li L, Wu L, et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils[J]. Global Change Biology, 2004, 10(1):79-92.
[89]
Yan X Y, Cai Z C, Wang S W, et al. Direct measurement of soil organic carbon content change in the croplands of China[J]. Global Change Biology, 2011, 17(3):1487-1496.
[90]
Ni J. Carbon storage in terrestrial ecosystems of China:Estimates at different spatial resolutions and their responses to climate change[J]. Climatic Change, 2001, 49(3):339-358.
[91]
Ni J. Carbon storage in grasslands of China[J]. Journal of Arid Environments, 2002, 50(2):205-218.
[92]
Liu X, Colman S M, Brown E T, et al. Abrupt deglaciation on the northeastern Tibetan Plateau:Evidence from Lake Qinghai[J]. Journal of Paleolimnology, 2014, 51(2):223-240.
[93]
Wang S Q, Tian H Q, Liu J Y, et al. Pattern and change of soil organic carbon storage in China:1960s-1980s[J]. Tellus B, 2003, 55(2):416-427.
[94]
Tang H J, Qiu J J, Van Ranst E, et al. Estimations of soil organic carbon storage in cropland of China based on DNDC model[J]. Geoderma, 2006, 134(1):200-206.
[95]
Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass[J]. Climatic Change, 2008, 86(3):375-396.
[96]
Li Z P, Han F X, Su Y, et al. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma, 2007, 138(1):119-126.
[97]
赵敏, 周广胜. 中国森林生态系统的植物碳贮量及其影响因子分析[J]. 地理科学, 2004, 24(1):50-54. Zhao Min, Zhou Gguangsheng. Carbon storage of forest vegetation and its relationship with climatic factors[J]. Scientia Geographica Sinica, 2004, 24(1):50-54.
[98]
Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241):1009-1013.
[99]
Peng C, Apps M J. Contribution of China to the global carbon cycle since the last glacial maximum[J]. Tellus B, 1997, 49(4):393-408.
[100]
遇蕾, 任国玉. 全新世中国陆地生态系统有机碳储量变化的估算[J]. 气候变化研究进展, 2008, 4(1):12-16. Yu Lei, Ren Guoyu. Changes in terrestrial carbon storage over China during the Holocene[J]. Advances in Climate Change Research, 2008, 4(1):12-16.
[101]
Battin T J, Kaplan L A, Findlay S, et al. Biophysical controls on organic carbon fluxes in fluvial networks[J]. Nature Geoscience, 2008, 1(2):95-100.