Temporal and spatial variations and regional responses of abrupt climatic events since the last deglaciation are important contents of paleoclimate and environmental change research. However, there are few records of abrupt climatic events since the last deglaciation in arid Central Asia, especially the regional response of rapid warming process during the last deglaciation. Based on the analysis of carbonate content and grain size of borehole sediments in Sayram Lake (44°30'~44°42'N, 81°05'~81°15'E), a sub-alpine lake in the central part of the Western Tianshan Mountains, Xinjiang, the records of climatic abrupt events and their regional response processes in arid Central Asia since the last deglaciation were discussed. In this study, a 300-cm sediment core was recovered at the depth of 86.0 m in the center of Sayram Lake. The core was sub-sampled at 2 cm intervals and a total of 149 carbonate content and grain size samples were analyzed throughout the record. The relationship between the carbonate content and grain size and the paleoenvironmental changes from Sayram Lake, Xinjiang was investigated. The record covers periods since 23.4 cal.ka B. P. to the present and is based on the analysis of 14 AMS radiocarbon 14C dates using bulk organic matter from the lake sediment. The average time resolution of 149 samples is 156 a, of which 23.4~16.6 cal.ka B. P. is 247 a, 16.6~8.6 cal.ka B. P. is 810 a and 8.6~0 cal.ka B. P. is 70 a. Carbonate in sediments of Sayram Lake mainly depends on the intense evaporation and concentration of lake water caused by high temperature in summer and the consumption of CO2 in water by biological activities, which results in the formation of carbonate supersaturated precipitation. Therefore, the change of carbonate content indicates the variation of regional temperature. Carbonate content decreased significantly during the period of 17.4~15.2 cal.ka B. P., 12.6~11.7 cal.ka B. P., 10.6~10.3 cal.ka B. P., 8.4~8.0 cal.ka B. P., 6.0~5.4 cal.ka B. P., 4.4~4.0 cal.ka B. P., 3.0~2.7 cal.ka B. P. and 0.7~0.4 cal.ka B. P. indicating a decrease in temperature. These cold events correspond to Heinrich 1 (H1) and Younger Dryas (YD) cold events since the deglacial period, and 10.5 ka, 8.2 ka, 5.5 ka, 4.2 ka, 2.8 ka and Little Ice Age cold events since the Holocene respectively. A rapid increase in carbonate content during the period of 15.2~12.9 cal.ka B. P. indicated a rise in temperature, corresponding to Bølling-Allerød (B-A) warm events. The change of grain size of Sayram Lake directly reflects the change of lake level, and the increase of coarse grain content reflects the decrease of lake level and the drought of climate. The content of coarse grain increased significantly during 17.4~15.2 cal.ka B. P., 12.6~11.7 cal.ka B. P., 8.4~8.0 cal.ka B. P., 6.0~5.4 cal.ka B. P. and 4.4~4.0 cal.ka B. P., which were consistent with the indicators of the reduction of carbonate. It further supported the drought of climate and the decrease of lake level during the cold events of H1, YD, 8.2 ka, 5.5 ka and 4.2 ka. When the lake level reaches a certain depth, the grain size is slightly affected by abrupt climatic events. So, since 4.0 cal.ka B. P., the content of coarse grains has been relatively stable, and the change is not obvious, indicating that the climate is wet and the lake level rises during this period. In addition, the carbonate content and the percentage of coarse grain in 7.4 cal.ka B. P. and 6.8 cal.ka B. P. also indicated two obvious event records, reflecting the climate instability during this period. The above results are consistent with the existing records of climate abrupt events in the arid Central Asia. It shows that there is a similar evolution model of abrupt climate change in this area since the last deglaciation. At the same time, the consistency of these abrupt climatic events with high latitude ice cores and low latitude stalagmite records indicates that the abrupt climatic events have global impact and are controlled by the same genetic factors.
蒋庆丰, 金典, 郑佳楠, 杨玉凤. 末次冰消期以来赛里木湖沉积记录的气候突变[J]. 第四纪研究, 2019, 39(4): 952-963.
Jiang Qingfeng, Jin Dian, Zheng Jianan, Yang Yufeng. Abrupt climate events recorded by Sayram Lake sediments since the last deglaciation. Quaternary Sciences, 2019, 39(4): 952-963.
Bauska T K, Baggenstos D, Brook E J, et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113:3465-3470. doi:10.1073/pnas.1513868113.
[2]
Alley R B. The Younger Dryas cold interval as viewed from central Greenland[J]. Quaternary Science Reviews, 2000, 19:213-226. doi:10.1016/s0277-3791(99)00062-1.
[3]
Lambeck K, Chappell J. Sea level change through the last glacial cycle[J]. Science, 2001, 292:679-686. doi:10.1126/science.1059549.
[4]
贾红娟, 汪敬忠, 秦小光, 等. 罗布泊地区晚冰期至中全新世气候特征及气候波动事件[J]. 第四纪研究, 2017, 37(3):510-521. Jia Hongjuan, Wang Jingzhong, Qin Xiaoguang, et al. Climate and abrupt events recorded in the Lop Nur region from Late Glacial to the Middle Holocene[J]. Quaternary Sciences, 2017, 37(3):510-521.
[5]
贾飞飞, 鲁瑞洁, 高尚玉. 毛乌素沙漠东南缘湖沼相沉积物粒度特征记录的12.2 cal.ka B. P. 以来的区域环境变化[J]. 第四纪研究, 2018, 38(5):1211-1220. Jia Feifei, Lu Ruijie, Gao Shangyu. Environmental changes recorded from grain-size characteristics of the lacustrine-peat sediments from southeastern margin of Mu Us Desert since 12.2 cal.ka B. P.[J]. Quaternary Sciences, 2018, 38(5):1211-1220.
[6]
何薇, 汪亘, 王永莉, 等. 四川邛海湖泊沉积物记录的过去30 cal.ka B. P. 以来的古气候环境特征[J]. 第四纪研究, 2018, 38(5):1179-1192. He Wei, Wang Gen, Wang Yongli, et al. Characteristics of climate and environment over the past 30 cal.ka B. P. recorded in lacustrine deposits of the Qionghai Lake, Sichuan Province[J]. Quaternary Sciences, 2018, 38(5):1179-1192.
[7]
Shen J. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum:A review and synthesis of lacustrine sediment archives[J]. Chinese Science Bulletin, 2012, 58(1):17-31.
[8]
Zhao K L, Li X Q, Dodson J, et al. Climate instability during the last deglaciation in central Asia, reconstructed by pollen data from Yili Valley, NW China[J]. Review of Palaeobotany and Palynology, 2013, 189:8-17. doi:10.1016/j.revpalbo.2012.10.005.
[9]
Yang S L, Ding Z L. A 249 kyr stack of eight loess grain size records from Northern China documenting millennial-scale climate variability[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(3):798-814.
[10]
张恩楼, 孙伟伟, 刘恩峰, 等. 末次冰盛期以来洱海沉积物元素碳同位素特征与区域植被组成变化[J]. 第四纪研究, 2017, 37(5):1027-1036. Zhang Enlou, Sun Weiwei, Liu Enfeng, et al. Vegetation change reconstructed by a stable isotope record of elemental carbon from Lake Erhai, Southwest China since the Last Glacial Maximum[J]. Quaternary Sciences, 2017, 37(5):1027-1036.
[11]
崔梦月, 洪晖, 孙晓双, 等. 福建仙云洞石笋记录的新仙女木突变事件结束时的缓变特征[J]. 第四纪研究, 2018, 38(3):711-719. Cui Mengyue, Hong Hui, Sun Xiaoshuang, et al. The gradual change characteristics at the end of the Younger Dryas event inferred from a speleothem record from Xianyun Cave, Fujian Province[J]. Quaternary Sciences, 2018, 38(3):711-719.
[12]
毛雪, 蒋汉朝, 杨桂芳, 等. 我国末次冰消期古气候时空演化特征初探[J]. 第四纪研究, 2011, 31(1):57-65. Mao Xue, Jiang Hanchao, Yang Guifang, et al. Preliminary study on spatial and temporal characters of palaeoclimate evolution in China during the last deglaciation[J]. Quaternary Sciences, 2011, 31(1):57-65.
[13]
高春亮, 余俊清, 闵秀云, 等. 末次冰消期以来中国湖泊沉积记录的古气候演化及其驱动机制研究[J]. 盐湖研究, 2017, 25(2):76-88. Gao Chunliang, Yu Junqing, Min Xiuyun, et al. The study on paleoclimatic evolution and driving mechanisms since the last deglaciation recorded by lacustrine sediments in China[J]. Journal of Salt Lake Research, 2017, 25(2):76-88.
[14]
杨石岭, 董欣欣, 肖举乐. 末次冰盛期以来东亚季风变化历史——中国北方的地质记录[J]. 中国科学:地球科学, 2018, 48, doi:10.1360/N072018-00056. Yang Shiling, Dong Xinxin, Xiao Jule. The East Asian Monsoon since the Last Glacial Maximum:Evidence from geological records in northern China[J]. Science China:Earth Sciences, 2018, 48, doi:10.1360/N072018-00056.
[15]
沈吉, 肖霞云. 2万年来南亚季风演化历史[J]. 第四纪研究, 2018, 38(4):799-820. Shen Ji, Xiao Xiayun. Evolution of the south Asian monsoon during the last 20 ka recorded in lacustrine sediments from Southwestern China[J]. Quaternary Sciences, 2018, 38(4):799-820.
[16]
徐方建, 李安春. 末次冰消期以来古气候演化研究进展及展望[J]. 科技导报, 2010, (9):102-107. Xu Fangjian, Li Anchun. Paleoclimatic evolution since the last deglaciation:A review and prospect view[J]. Science & Technology Review, 2010, (9):102-107.
[17]
安成邦, 赵永涛, 施超. 末次盛冰期新疆的湖泊记录及其气候环境意义[J]. 海洋地质与第四纪地质, 2013, 33(4):87-91. An Chengbang, Zhao Yongtao, Shi Chao. Lake records during the Last Glacial Maximum from Xinjiang, NW China and their climatic implications[J]. Marine Geology & Quaternary Geology, 2013, 33(4):87-91.
[18]
段阜涛, 安成邦, 赵永涛, 等. 新疆湖泊岩芯记录的末次间冰期以来气候变化初步研究[J]. 第四纪研究, 2018, 38(5):1156-1165. Duan Futao, An Chengbang, Zhao Yongtao, et al. A preliminary study on the climate change since the last interglaciation based on lake sediments from Xinjiang, Northwest China[J]. Quaternary Sciences, 2018, 38(5):1156-1165.
[19]
Shi Y F, Shen Y P, Kang E S, et al. Recent and future climate change in Northwest China[J]. Climatic Change, 2007, 80(3-4):379-393.
[20]
陈发虎, 黄小忠, 张家武, 等. 新疆博斯腾湖记录的亚洲内陆干旱区小冰期湿润气候研究[J]. 中国科学(D辑:地球科学), 2007, 37(1):77-85. Chen Fahu, Huang Xiaozhong, Zhang Jiawu, et al. Humid Little Ice Age in arid Central Asia documented by Bosten Lake, Xinjiang, China[J]. Science in China(Series D:Earth Sciences), 2007, 37(1):77-85.
[21]
王苏民, 窦鸿身. 中国湖泊志[M]. 北京:科学出版社, 1998:348-349. Wang Sumin, Dou Hongshen. Annals of Lakes in China[M]. Beijing:Science Press, 1998:348-349.
[22]
吴敬禄, 曾海鳌, 马龙, 等. 新疆主要湖泊水资源及近期变化分析[J]. 第四纪研究, 2012, 32(1):142-150. Wu Jinglu, Zeng Hai'ao, Ma Long, et al. Recent changes of selected lake water resources in arid Xinjiang, Northwest China[J]. Quaternary Sciences, 2012, 32(1):142-150.
[23]
张家宝, 邓子风. 新疆降水概论[M]. 北京:气象出版社, 1987:1-70. Zhang Jiabao, Deng Zifeng. Precipitations in Xinjiang[M]. Beijing:China Meteorological Press, 1987:1-70.
[24]
Aizen E M, Aizen V B, Melack J M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia[J]. International Journal of Climatology, 2001, 21(5):535-556.
[25]
胡汝冀. 中国天山自然地理[M]. 北京:中国环境科学出版社, 2004:278-284. Hu Ruji. Physical Geography of the Tianshan Mountains in China[M]. Beijing:China Environmental Science Press, 2004:278-284.
[26]
蓝江湖, 徐海, 郁科科, 等. 中亚东部晚全新世水文气候变化及可能成因[J]. 中国科学:地球科学, 2018, 48, doi:10.1360/N072018-00057. Lan Jianhu, Xu Hai, Yu Keke, et al. 2018. Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia[J]. Science China:Earth Sciences, 2018, 48, doi:10.1360/N072018-00057.
[27]
陈志军, 朱健, 辛红云. 赛里木湖水化学特征及水质现状评价[J]. 沙漠与绿洲气象, 2008, 2(6):46-48. Chen Zhijun, Zhu Jian, Xin Hongyun. Preliminary evaluation of hydrochemistry characteristics and water quality status of Sailimu Lake[J]. Desert and Oasis Meteorology, 2008, 2(6):46-48.
[28]
栾翰稻. 赛里木湖主要理化因子的时空分布及水质评价[D]. 大连:大连海洋大学硕士学位论文, 2017:3-17. Luan Handao. Spatial and Temporal Distribution of Main Physical and Chemical Factors and Water Quality Assessment of Sayram Lake[D]. Dalian:The Master's Dissertation of Dalian Ocean University, 2017:3-17.
[29]
Jiang Q F, Ji J F, Shen J, et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China[J]. Science China:Earth Sciences, 2013, 56(3):339-353.
[30]
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine 13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4):1869-1887.
[31]
Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3):457-474.
[32]
R Development Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria[CP]. 2013.
[33]
肖海丰, 沈吉, 肖霞云. 鹤庆孔碳酸盐记录与深海δ18O和黄土粒度记录的对比[J]. 海洋地质与第四纪地质, 2006, 26(2):41-47. Xiao Haifeng, Shen Ji, Xiao Xiayun. Comparison between carbonate record of Heqing core, δ18O record of the deep sea and grain size record of the continental loess[J]. Marine Geology & Quaternary Geology, 2006, 26(2):41-47.
[34]
Hou J Z, D'Andrea W J, Liu Z H. The influence of14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau[J]. Quaternary Science Reviews, 2012, 48:67-79. doi:10.1016/j.quascirev.2012.06.008.
[35]
Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2008, 70(3):412-425.
[36]
An C B, Lu Y B, Zhao J J, et al. A high-resolution record of Holocene environmental and climatic changes from Lake Balikun(Xinjiang, China):Implications for Central Asia[J]. The Holocene, 2011, 22(1):43-52.
[37]
黄小忠. 新疆博斯腾湖记录的亚洲中部干旱区全新世气候变化研究[D]. 兰州:兰州大学博士学位论文, 2006:99-115. Huang Xiaozhong. Holocene Climate Variability of Arid Central Asia Documented by Bosten Lake, Xinjiang, China[D]. Lanzhou:The Doctoral Dissertation of Lanzhou University, 2006:99-115.
[38]
Xu H, Ai L, Tan L C, et al. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications[J]. Chemical Geology, 2006, 235(3-4):262-275.
[39]
Xu H, Liu X Y, Hou Z H. Temperature variations at Lake Qinghai on decadal scales and the possible relation to solar activities[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(1):138-144.
[40]
陈敬安, 万国江, 汪福顺, 等. 湖泊现代沉积物碳环境记录研究[J]. 中国科学(D辑:地球科学), 2002, 32(1):73-80. Chen Jing'an, Wang Guojiang, Wang Fushun, et al. Environmental records of carbon in recent lake sediments[J]. Science in China(Series D:Earth Sciences), 2002, 32(1):73-80.
[41]
王树基. 关于赛里木湖的形成、演变与第四纪古冰川作用的关系[J]. 干旱区地理, 1978, (1):47-55. Wang Shuji. Study on the relationship between formation and evolution of Sayram Lake and Quaternary glaciations[J]. Arid Land Geography, 1978, (1):47-55.
[42]
陈明勇, 徐胜利, 吴中海, 等. 新疆赛里木湖的湖滩岩特征、时代及其对MIS 3阶段湖面变化的指示意义[J]. 地质力学学报, 2014, 20(2):174-184. Chen Mingyong, Xu Shengli, Wu Zhonghai, et al. The features and ages of lake beach rock around Sayram Lake in western Tian shan and its significance of lake level fluctuation during the last interglacial epoch MIS 3[J]. Journal of Geomechanics, 2014, 20(2):174-184.
[43]
陈敬安, 万国江, 张峰, 等. 不同时间尺度下的湖泊沉积物环境记录——以沉积物粒度为例[J]. 中国科学(D辑:地球科学), 2003, 33(6):563-568. Chen Jing'an, Wang Guojiang, Zhang Feng, et al. Environmental records of lacustrine sediments in different time scales:Sediment grain size as an example[J]. Science in China(Series D:Earth Sciences), 2003, 33(6):563-568.
[44]
Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278:1257-1266. doi:10.1126/science.278.5341.1257.
[45]
Wang S W, Ge Q S, Wang F, et al. Abrupt climate changes of Holocene[J]. Chinese Geographical Science, 2013, 23(1):1-12.
[46]
赵家驹. 新疆东部巴里坤湖记录的末次盛冰期以来气候变化研究[D]. 兰州:兰州大学博士学位论文, 2014:67-76. Zhao Jiaju. Climate Change since the Last Glacial Maximum Recorded by Lake Balikun in Eastern Xinjiang[D]. Lanzhou:The Doctoral Dissertation of Lanzhou University, 2006:99-115.
[47]
Luo C, Peng Z C, Yang D, et al. A lacustrine record from Lop Nur, Xinjiang, China:Implications for paleoclimate change during Late Pleistocene[J]. Journal of Asian Earth Sciences, 2009, 34(1):38-45.
[48]
Li X Q, Zhao K L, Dodson J, et al. Moisture dynamics in Central Asia for the last 15 kyr:New evidence from Yili Valley, Xinjiang, NW China[J]. Quaternary Science Reviews, 2011, 30(23-24):3457-3466.
[49]
Stuiver M, Grootes P M. GISP2 oxygen isotope ratios[J]. Quaternary Research, 2000, 53(3):277-284.
[50]
Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294:2345-2348. doi:10.1126/science.1064618.
[51]
Wang Y J, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451:1090-1093. doi:10.1038/nature06692.
[52]
Rhodes T E, Gasse F, Lin R, et al. A Late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar(northern Xinjiang, Western China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1-2):105-121.
[53]
Kang S G, Wang X L, Lu Y C, et al. A high-resolution quartz OSL chronology of the Talede loess over the past~30 ka and its implications for dust accumulation in the Ili Basin, Central Asia[J]. Quaternary Geochronology, 2015, 30:181-187. doi:10.1016/j.quageo.2015.04.006.
[54]
Youn J H, Seong Y B, Choi J H, et al. Loess deposits in the northern Kyrgyz Tien Shan:Implications for the paleoclimate reconstruction during the Late Quaternary[J]. Catena, 2014, 117:81-93. doi:10.1016/j.catena.2013.09.007.
[55]
Fitzsimmons K E, Sprafke T, Zielhofer C, et al. Loess accumulation in the Tian Shan piedmont:Implications for palaeoenvironmental change in arid Central Asia[J]. Quaternary International, 2018, 469:30-43. doi:10.1016/j.quaint.2016.07.041.
[56]
Kislov A V, Panin A, Toropov P. Current status and palaeostages of the Caspian Sea as a potential evaluation tool for climate model simulations[J]. Quaternary International, 2014, 345:48-55. doi:10.1016/j.quaint.2014.05.014.
[57]
Zhao Y T, An C B, Mao L M, et al. Vegetation and climate history in arid western China during MIS 2:New insights from pollen and grain-size data of the Balikun Lake, eastern Tien Shan[J]. Quaternary Science Reviews, 2015, 126:112-125. doi:10.1016/j.quascirev.2015.08.027.
[58]
Takeuchi N, Fujita K, Aizen V B, et al. The disappearance of glaciers in the Tien Shan Mountains in Central Asia at the end of Pleistocene[J]. Quaternary Science Reviews, 2014, 103:26-33. doi:10.1016/j.quascirev.2014.09.006.
[59]
Wang W, Feng Z D, Ran M, et al. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China:A potential contribution to understanding of Holocene climate pattern in East-Central Asia[J]. Quaternary International, 2013, 311:54-62. doi:10.1016/j.quaint.2013.07.034.
[60]
Jiang Q F, Shen J, Liu X Q, et al. A high-resolution climatic change since Holocene inferred from multi-proxy of lake sediment in westerly area of China[J]. Chinese Science Bulletin, 2007, 52(14):1970-1979.
[61]
Zhao J J, An C B, Huang Y S, et al. Contrasting Early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia[J]. Quaternary Science Reviews, 2017, 178:14-23. doi:10.1016/j.quascirev.2017.10.036.
[62]
Ma Q F, Zhu L P, Lü X M, et al. Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau[J]. Global and Planetary Change, 2019, 174:16-25. doi:10.1016/j.gloplacha.2019.01.004.
[63]
唐进年, 丁峰, 张进虎, 等. 库姆塔格沙漠东南缘BL剖面粒度记录的全新世快速气候事件[J]. 干旱区地理, 2017, 40(6):1171-1178. Tang Jinnian, Ding Feng, Zhang Jinhu, et al. BL section recording process of rapid climate change event of Holocene at southeastern edge of the Kumtagh Desert[J]. Arid Land Geography, 2017, 40(6):1171-1178.
[64]
Bai Y J, Zhang P Z, Gao T, et al. The 5400 a BP extreme weakening event of the Asian summer monsoon and cultural evolution[J]. Science China:Earth Sciences, 2017, 60(6):1171-1182.
[65]
Ji J F, Shen J, Balsam W, et al. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the Late Glacial as interpreted from visible reflectance of Qinghai Lake sediments[J]. Earth and Planetary Science Letters, 2005, 233(1-2):61-70.
[66]
Zhao C, Yu Z C, Zhao Y, et al. Holocene millennial-scale climate variations documented by multiple lake-level proxies in sediment cores from Hurleg Lake, Northwest China[J]. Journal of Paleolimnology, 2010, 44(4):995-1008.
[67]
Ma L, Wu J L, Yu H, et al. The Medieval Warm Period and the Little Ice Age from a sediment record of Lake Ebinur, Northwest China[J]. Boreas, 2011, 40(3):518-524.
[68]
Clark P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change[J]. Nature, 2002, 415(6874):863-869. doi:10.1038/415863a.
[69]
Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change[J]. Science, 2003, 299:2005-2010. doi:10.1126/science.1081056.
[70]
Alley R, Agustsdottir A. The 8 k event:Cause and consequences of a major Holocene abrupt climate change[J]. Quaternary Science Reviews, 2005, 24(10-11):1123-1149.
[71]
Sadekov A Y, Ganeshram R, Pichevin L, et al. Palaeoclimate reconstructions reveal a strong link between El Niño -Southern Oscillation and Tropical Pacific mean state[J]. Nature Communications, 2013, 4:2692. doi:10.1038/ncomms3692.
[72]
Wang P X. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 2009, 54(7):1113-1136.
[73]
肖举乐, 蔡演军, 强明瑞, 等. 全新世亚洲季风变异与干旱演变及其驱动机制[J]. 中国基础科学, 2017, 5:12-17. doi:10.3969/j.issn.1009-2412.2017.05.003. Xiao Jule, Cai Yanjun, Qiang Mingrui, et al. Holocene Asian Summer Monsoon Variability and Arid Environment Evolution:Processes and Mechanisms[J]. China Basic Science, 2017, 5:12-17. doi:10.3969/j.issn.1009-2412.2017.05.003.