内蒙古乌兰哈达-高勿素断裂的新活动证据及构造意义初探

罗全星, 李传友. 内蒙古乌兰哈达-高勿素断裂的新活动证据及构造意义初探[J]. 第四纪研究, 2022, 42(4): 967-977. doi: 10.11928/j.issn.1001-7410.2022.04.05
引用本文: 罗全星, 李传友. 内蒙古乌兰哈达-高勿素断裂的新活动证据及构造意义初探[J]. 第四纪研究, 2022, 42(4): 967-977. doi: 10.11928/j.issn.1001-7410.2022.04.05
罗全星, 李传友. 内蒙古乌兰哈达-高勿素断裂的新活动证据及构造意义初探[J]. 第四纪研究, 2022, 42(4): 967-977. doi: 10.11928/j.issn.1001-7410.2022.04.05 LUO Quanxing, LI Chuanyou. Evidence of recent activity along the Wulanhada-Gaowusu Fault in Ulanqab, Inner Mongolia and its tectonic implications[J]. Quaternary Sciences, 2022, 42(4): 967-977. doi: 10.11928/j.issn.1001-7410.2022.04.05
Citation: LUO Quanxing, LI Chuanyou. Evidence of recent activity along the Wulanhada-Gaowusu Fault in Ulanqab, Inner Mongolia and its tectonic implications[J]. Quaternary Sciences, 2022, 42(4): 967-977. doi: 10.11928/j.issn.1001-7410.2022.04.05

内蒙古乌兰哈达-高勿素断裂的新活动证据及构造意义初探

  • 基金项目:

    国家重点研究发展计划项目(批准号:2017YFC1500100)资助

详细信息
    作者简介:

    罗全星, 男, 26岁, 博士研究生, 自然地理学专业, E-mail: qxluo1995@163.com

    通讯作者: 李传友, E-mail: chuanyou@ies.ac.cn
  • 中图分类号: P546

Evidence of recent activity along the Wulanhada-Gaowusu Fault in Ulanqab, Inner Mongolia and its tectonic implications

More Information
  • 近期在鄂尔多斯地块东北缘、蒙古高原南缘的乌兰哈达火山群附近发现一条长约100余公里的NW向断裂——乌兰哈达-高勿素断裂,并基于高分辨率卫星影像解译和野外地质调查对该断裂的新活动特征进行了初步研究。断裂活动的地貌证据包括线性展布的断层陡坎、断塞塘、断层槽谷以及位错冲沟、断头沟等。跨断裂冲沟的同步性左旋位错及广泛发育的反向陡坎(倾向NE)等指示断裂应为左旋走滑为主兼具由SW向NE逆冲的运动性质。乌兰哈达-高勿素断裂的构造位置及几何学、运动学特征指示其应归属于NW向左旋走滑的张家口-渤海断裂带,该断裂的左旋走滑运动应在调节其南、北两侧块体向E的差异运动中起着重要的作用。另一方面,鄂尔多斯地块东北缘的乌兰哈达-高勿素断裂及张家口断裂、洗马林断裂等NW向断裂所表现出的逆冲运动特征指示鄂尔多斯地块东北缘可能持续受到青藏高原东北缘对鄂尔多斯地块西南缘自晚中新世以来推挤作用远程效应的影响,这些伴有逆冲运动的NW向断裂应是鄂尔多斯地块东北缘地区响应青藏高原东北缘NE向生长和扩展的一种具体表现。乌兰哈达-高勿素断裂新活动证据的发现不仅完善了张家口-渤海断裂带的几何图像,也为认识和理解鄂尔多斯地块东北缘的构造变形和评价地震危险性提供了新约束。

  • 加载中
  • 图 1 

    华北地区构造变形模式图

    Figure 1. 

    Topographic map showing the tectonic deformation pattern of North China. The red line is the Wulanhada-Gaowusu Fault, yellow lines represent faults in Zhangjiakou-Bohai Fault Zone; F1—Zhangjiakou Fault, F2—Ximalin Fault, F3—Xinbaoan-Shacheng Fault, F4—Shizhuang Fault, F5—Nankou-Sunhe Fault, F6—Yongdinghe Fault, F7—Langfang-Wuqing Fault, F8—Jiyunhe Fault, F9—Haixi Fault, F10—Bohai Fault. The base map was made with GeoMapApp software

    图 2 

    乌兰哈达-高勿素断裂及邻区地形和地质图

    Figure 2. 

    Topographic and geological map of the Wulanhada-Gaowusu Fault and adjacent regions. (a)Topographic map showing the topographic features of Wulanhada-Gaowusu Fault and adjacent regions. The base map is a 12.5 m-resolution digital elevation model which can be downloaded from Earthdata NASA(https://search.asf.alaska.edu/); (b)Geological map of the Wulanhada-Gaowusu Fault and adjacent regions, which is adapted from the 1 ︰ 500, 000 Geological Map of Inner Mongolia Autonomous Region according to the National Geological Archives of China(http://www.ngac.org.cn/Map/Document?guid=EC7E1A7A793C1954E0430100007F182E). Stars indicate field visit sites in this study and blue triangles represent the cones of the Wulanhada Volcano Group, and the volcanic cone positions are referenced from Zhao et al.[21]; (c)A 10 km-wide swath topographic profile P-P′ across the Wulanhada-Gaowusu Fault, and see Fig. 2a for its extent and location

    图 3 

    Site 1至Site 4研究点断错地貌特征

    Figure 3. 

    Displaced geomorphic features along the fault trace from Site 1 to Site 4. Red triangles show the fault trace and solid blue lines indicate stream channels, and arrows indicate downstream direction. (a)Google Earth image displaying the linear fault troughs along the fault trace at Site 1; (b)Google Earth image displaying the linear uphill-facing fault scarps and elongated sag ponds along the fault trace at Site 2;(c~d)Field photos showing uphill-facing fault scarps and fault-parallel troughs at Site 2; (e)Google Earth image displaying the linear uphill-facing fault scarps and elongated sag ponds along the fault trace at Site 3; (f)Field photo showing uphill-facing fault scarps at Site 3; (g)ArcGIS imagery displaying the linear uphill-facing fault scarps and fault troughs along the fault trace at Site 4; (h)Field photo showing uphill-facing fault scarps at Site 4

    图 4 

    Site 5研究点断错地貌特征

    Figure 4. 

    Displaced geomorphic features along the fault trace at Site 5. (a)ArcGIS satellite image showing linear fault troughs, uphill-facing scarps, offset stream channels, and beheaded stream channels at Site 5; (b)Google Earth satellite image showing the systematically left-lateral offset stream channels along the fault trace

    图 5 

    Site 5研究点断错地貌野外照片(红色三角表示断裂通过位置)

    Figure 5. 

    Field photos showing the displaced geomorphic features along the fault trace at Site 5(red triangles indicate the fault locations).(a~b)Field photos showing the uphill-facing scarps and fault-parallel valley; (c)Field photo showing the R2 left-lateral offset stream channel; (d)Field photo showing the sedimentary characteristics of the exposed sediments on the walls of R2 stream channel. See locations of photos in Fig. 4

    图 6 

    鄂尔多斯地块东北缘断裂构造图

    Figure 6. 

    Topographic map showing fault structures in the northeastern margin of Ordos Block.

  • [1]

    Zhang Y Q, Mercier J L, Vergély P. Extension in the graben systems around the Ordos(China), and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia[J]. Tectonophysics, 1998, 285(1-2): 41-75. doi: 10.1016/S0040-1951(97)00170-4

    [2]

    Zhang Y G, Zheng W J, Wang Y J, et al. Contemporary deformation of the North China Plain from global positioning system data[J]. Geophysical Research Letters, 2018, 45: 1851-1859. https://doi.org/10.1002/2017GL076599. doi: 10.1002/2017GL076599

    [3]

    Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018774. https://doi.org/10.1029/2019JB018774. doi: 10.1029/2019JB018774

    [4]

    徐杰, 宋长青, 楚全芝. 张家口-蓬莱断裂带地震构造特征初步探讨[J]. 地震地质, 1998, 20(2): 146-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ802.009.htm

    Xu Jie, Song Changqing, Chu Quanzhi. Preliminary study on the seismotectonic characteristics of the Zhangjiakou-Penglai Fault Zone[J]. Seismology and Geology, 1998, 20(2): 146-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ802.009.htm

    [5]

    Chen C Y. Analysis of the motion and deformation characteristics along the Zhangjiakou-Bohai Fault[J]. Earthquake Research in China, 2017, 31(1): 66-78.

    [6]

    Shen Z K, Zhao C K, Yin A, et al. Contemporary crustal deformation in East Asia constrained by Global Positioning System measurements[J]. Journal of Geophysical Research, 2000, 105(B3): 5721-5734. doi: 10.1029/1999JB900391

    [7]

    郑炳华, 虢顺民, 徐好民. 燕山地区北西向和北西西向断裂构造基本特征初步探讨[J]. 地震地质, 1981, 3(2): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198102006.htm

    Zheng Binghua, Guo Shunmin, Xu Haomin. Preliminary study of principle features of the NW and NWW trending fault structures in the Yanshan region[J]. Seismology and Geology, 1981, 3(2): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198102006.htm

    [8]

    高战武, 徐杰, 宋长青, 等. 张家口-蓬莱断裂带的分段特征[J]. 华北地震科学, 2001, 19(1): 35-43. doi: 10.3969/j.issn.1003-1375.2001.01.006

    Gao Zhanwu, Xu Jie, Song Changqing, et al. The segmental character of Zhangjiakou-Penglai Fault[J]. North China Earthquake Sciences, 2001, 19(1): 35-43. doi: 10.3969/j.issn.1003-1375.2001.01.006

    [9]

    索艳慧, 李三忠, 刘鑫, 等. 中国东部NWW向活动断裂带构造特征: 以张家口-蓬莱断裂带为例[J]. 岩石学报, 2013, 29(3): 953-966. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303018.htm

    Suo Yanhui, Li Sanzhong, Liu Xin, et al. Structural characteristic cs of NWW-trending active fault zones in East China: A case study of the Zhangjiakou-Penglai Fault Zone[J]. Acta Petrologica Sinica, 2013, 29(3): 953-966. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303018.htm

    [10]

    Guo L L, Li S Z, Suo Y H, et al. Experimental study and active tectonics on the Zhangjiakou-Penglai Fault zone across North China[J]. Journal of Asian Earth Sciences, 2015, 114: 18-27. http://dx.doi.org/10.1016/j.jseaes.2015.03.045. doi: 10.1016/j.jseaes.2015.03.045

    [11]

    徐锡伟, 吴卫民, 张先康, 等. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社, 2002: 84-96.

    Xu Xiwei, Wu Weimin, Zhang Xiankang, et al. New Changing of Crustal Tectonic and Earthquake in Capital Circle[M]. Beijing: Science Press, 2002: 84-96.

    [12]

    陈长云, 贺建明, 李腊月, 等. 基于跨断层和GPS资料综合分析张渤带运动特征[J]. 华南地震, 2016, 36(3): 17-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201603003.htm

    Chen Changyun, He Jianming, Li Layue, et al. Analysis of the deformation characteristics of Zhangiiakou-Bohai Fault zone and its adjacent regions based on cross-fault observation data and GPS data[J]. South China Journal of Seismology, 2016, 36(3): 17-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201603003.htm

    [13]

    许来生, 陈跃, 李妩巍, 等. 乌兰哈达-高勿素深大断裂对商都盆地铀成矿水文地质条件的影响分析[J]. 铀矿地质, 2006, 22(5): 290-299.

    Xu Laisheng, Chen Yue, Li Wuwei, et al. Effection of Wulanhada-Gaowusu Fault to the hydrologic condition for uranium mineralization in Shangdu Basin[J]. Uranium Geology, 22(5): 290-299.

    [14]

    魏仙样, 卢进才, 李玉宏, 等. 商都坳陷浅层CO2气藏成因与典型气藏分析[J]. 西安石油大学学报(自然科学版), 2010, 25(3): 27-33. doi: 10.3969/j.issn.1673-064X.2010.03.007

    Wei Xianyang, Lu Jincai, Li Yuhong, et al. Genesis of shallow CO2 gas reservoir and analysis of typical gas reservoir in Shangdu Depression[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2010, 25(3): 27-33. doi: 10.3969/j.issn.1673-064X.2010.03.007

    [15]

    赵勇伟, 樊祺诚, 李霓, 等. 内蒙古乌兰哈达第四纪火山时空分布与构造控制[J]. 吉林大学学报(地球科学版), 2015, 45(增刊1): 1503-1528. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506001112.htm

    Zhao Yongwei, Fan Qicheng, Li Ni, et al. Temporal and spatial distribution and tectonic control of Quaternary volcanoes in Wulanhada, Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(Suppl. 1): 1503-1528. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506001112.htm

    [16]

    卢进才, 魏仙样, 曹萱铎, 等. 内蒙古商都地区CO2气藏地质条件研究[J]. 西北地质, 2002, 35(4): 122-134. doi: 10.3969/j.issn.1009-6248.2002.04.009

    Lu Jincai, Wei Xianyang, Cao Xuanduo, et al. Research on CO2 gas pool-geological conditions in Shangdu area, Inner Mongolia[J]. Northwestern Geology, 2002, 35(4): 122-134. doi: 10.3969/j.issn.1009-6248.2002.04.009

    [17]

    密文天, 辛杰, 席忠, 等. 内蒙古商都项家村金矿床地质特征及矿床成因[J]. 黄金, 2015, 36(11): 7-12. doi: 10.11792/hj20151103

    Mi Wentian, Xin Jie, Xi Zhong, et al. Geological characteristics and genesis of Xiangjiacun gold deposit, Shangdu, Inner Mongolia[J]. Gold, 2015, 36(11): 7-12. doi: 10.11792/hj20151103

    [18]

    李玉宏, 魏仙样, 卢进才, 等. 内蒙古自治区商都盆地新生界氢气成因[J]. 天然气工业, 2007, 27(9): 28-30. doi: 10.3321/j.issn:1000-0976.2007.09.008

    Li Yuhong, Wei Xianyang, Lu Jincai, et al. Hydrogen genesis of Cenozoic in Shangdu Basin, Inner Mongolia Autonomous Region[J]. Natural Gas Industry, 2007, 27(9): 28-30. doi: 10.3321/j.issn:1000-0976.2007.09.008

    [19]

    白志达, 王剑民, 许桂玲, 等. 内蒙古察哈尔右翼后旗乌兰哈达第四纪火山群[J]. 岩石学报, 2008, 24(11): 2585-2594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811014.htm

    [20]

    刘延畅, 白志达, 宋卡迪, 等. 内蒙古乌兰哈达晚第四纪玄武岩岩石学特征[J]. 地震地质, 2016, 38(1): 182-195. doi: 10.3969/j.issn.0253-4967.2016.01.014

    Liu Yanchang, Bai Zhida, Song Kadi, et al. Petrological properties of Late Quaternary basalts from Wulanhada, Inner Mongolia, China[J]. Seismology and Geology, 2016, 38(1): 182-195. doi: 10.3969/j.issn.0253-4967.2016.01.014

    [21]

    Zhao Y W, Fan Q C, Zou H B, et al. Tectonic controls of Late Cenozoic monogenetic intraplate volcanism at the Wulanhada volcanic field, Northern China[J]. Journal of Volcanology and Geothermal Research, 2018, https://doi.org/10.1016/j.jvolgeores.2018.01.022. doi: 10.1016/j.jvolgeores.2018.01.022

    [22]

    魏仙样, 卢进才, 魏建设. 高精度重磁测量在商都地区CO2气藏勘查中的应用[J]. 西北地质, 2008, 41(4): 111-117. doi: 10.3969/j.issn.1009-6248.2008.04.007

    Wei Xianyang, Lu Jincai, Wei Jianshe. Applications of high precision gravity and magnetic survey to CO2 gas pool exploration in Shangdu area[J]. Northwestern Geology, 2008, 41(4): 111-117. doi: 10.3969/j.issn.1009-6248.2008.04.007

    [23]

    姚生海, 盖海龙, 刘炜, 等. 柴达木盆地北缘断裂(阿木尼克山段) 构造地貌及晚第四纪活动速率研究[J]. 第四纪研究, 2020, 40(5): 1312-1322. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.19

    Yao Shenghai, Gai Hailong, Liu Wei, et al. Tectonic geomorphology and Late Quaternary slip rate of the Amunike segment, the north Qaidam Thrust Fault Zone[J]. Quaternary Sciences, 2020, 40(5): 1312-1322. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.19

    [24]

    魏永明, 李剑南, 陈玉, 等. 不同类型发震断层的同震地表破裂光学遥感特征研究[J]. 第四纪研究, 2021, 41(6): 1513-1531. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.01

    WeiYongming, LiJiannan, Chen Yu, et al. Research on optical remote sensing characteristics of coseismic surface rupture of different types of seismogenic faults[J]. Quaternary Sciences, 2021, 41(6): 1513-1531. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.01

    [25]

    杨景春. 中国北部和东北部构造地貌发育和第四纪构造应力状态的关系[J]. 地理学报, 1983, 38(3): 218-228. doi: 10.3321/j.issn:0375-5444.1983.03.002

    Yang Jingchun. Relationship between morphotectonic evolution and Quaternary tectonic stress state in north and northeastern China[J]. Acta Geographica Sinica, 1983, 38(3): 218-228. doi: 10.3321/j.issn:0375-5444.1983.03.002

    [26]

    Zhang Hongyan, Xie Furen, Jing Zhenjie. Research on heterogeneity of the present tectonic stress field in the basin-and-range province northwest of Beijing[J]. Chinese Journal of Geophysics, 2009, 52(12): 3061-3071.

    [27]

    Middleton T A, Elliott J R, Rhodes E J, et al. Extension rates across the northern Shanxi Grabens, China, from Quaternary geology, seismicity and geodesy[J]. Geophysical Journal International, 2017, 209(2): 535-558.

    [28]

    Zhang H, He Z T, Ma B Q, et al. The vertical slip rate of the Sertengshan piedmont fault, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2017, 143: 95-108. http://dx.doi.org/10.1016/j.jseaes.2017.04.014. doi: 10.1016/j.jseaes.2017.04.014

    [29]

    周月玲, 尤惠川. 张家口断裂第四纪构造变形与活动性研究[J]. 震灾防御技术, 2010, 5(2): 157-166. doi: 10.3969/j.issn.1673-5722.2010.02.002

    Zhou Yueling, You Huichuan. Research on Quaternary deformation and activities of Zhangjiakou Fault, Hebei Province[J]. Technology for Earthquake Disaster Prevention, 2010, 5(2): 157-166. doi: 10.3969/j.issn.1673-5722.2010.02.002

    [30]

    周月玲, 尤惠川, 杨歧焱. 洗马林断裂构造几何与变形转换作用[J]. 地震地质, 2018, 40(1): 57-70. doi: 10.3969/j.issn.0253-4967.2018.01.005

    Zhou Yueling, You Huichuan, Yang Qiyan. Geometry and deformation transformation of the Ximalin Fault[J]. Seismology and Geology, 2018, 40(1): 57-70. doi: 10.3969/j.issn.0253-4967.2018.01.005

    [31]

    郑文俊, 袁道阳, 张培震, 等. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究, 2016, 36(4): 775-788. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.04.01

    Zheng Wenjun, Yuan Daoyang, Zhang Peizhen, et al. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan Plateau and their implications for understanding northeastward growth of the plateau[J]. Quaternary Sciences, 2016, 36(4): 775-788. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.04.01

    [32]

    Wang Weitao, Kirby E, Zhang Peizhen, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. Geological Society of America Bulletin, 2013, 125: 377-400. doi:10.1130/B30611.1.

    [33]

    Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al. Rapid exhumation at~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248: 198-208. doi:10.1016/j.epsl.2006.05.023.

    [34]

    Lin A M, Yang Z Y, Sun Z M, et al. How and when did the Yellow River develop its square bend?[J]. Geology, 2001, 29(10): 951-954. doi: 10.1130/0091-7613(2001)029<0951:HAWDTY>2.0.CO;2

    [35]

    张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 2003, 33(增刊): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

    [36]

    国家地震局《鄂尔多斯周缘活动断裂系》课题组. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社, 1988: 71-108.

    Research Group of Ordos Periphery Active Fault System, China Earthquake Administration. Active Fault System around the Ordos Massif[M]. Beijing: Seismological Press, 1988: 77-108.

    [37]

    Cowan H, Nicol A. A comparison of historical and paleoseismicity in a newly formed fault zone and a mature fault zone, North Canterbury New Zealand[J]. Journal of Geophysical Research, 1996, 101(B3): 6021-6036.

    [38]

    Manighetti I, Caulet C, Barros L D, et al. Generic along-strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes[J]. Geochemistry, Geophysics, Geosystems, 2015, 16: 443-467. doi:10.1002/2014GC005691.

  • 加载中

(6)

计量
  • 文章访问数:  1247
  • PDF下载数:  122
  • 施引文献:  0
出版历程
收稿日期:  2022-01-28
修回日期:  2022-04-29
刊出日期:  2022-07-30

目录